TR3.5

Linalg Midterm Review

Huxley Marvit 2021-10-15 Fri 13:00

#ref #hw #study


1 Prep. Time.

1.1 Quiz review

  • wrong list:
    • def of span (verb)
    • def of a field
    • def of a direct sum
    • sum of subspaces
    • cross product
    • connection between linear independence and systems of equations
    • geometric interpretation of dot product
    • U1 + U2 is a direct sum iff U1 intersect U2 = {0}
    • def vector space
    • elementary matrix
    • solving matrix equations
    • finding inverse
    • find the plane containing
    • prove that a set of vectors is linearly dependent if and only if you can write on of the vectors as a linear combination of the others
    • prove or give a counterexample: v1, v2, v3, v4, basis of V, and U is subspace of V.. del v3 v4 is it a basis?
  • solutions
    • def of span (verb)
      • if the span of a list of vectors equals V, then the list of vecs spans V
        • ie. if it contains all the nessasarry info, then it spans.
    • def of a field
      • a set containing at least two distinct elements 0 and 1, along with the operations + and * as defined on the reals/complexs.
        • commutativity
        • associativity
        • additive identity
        • multiplicative identity
        • additive inverse
        • multiplicative inverse
        • distributive property
    • def direct sum
      • sum of subspaces where each element in the resultant subspace can be written uniquely as a sum of the elements in the original subspaces
    • sum of subspaces
      • subspaces containing the set of all possible linear combinations from the union of the original subspaces
    • cross product #TODO!
      • the determinant thingy, or
      • \(|A||B| \sin \theta n\)
        • n is the unit vector orthogonal to vectors A and B
    • connect between linear independence and systems of equations -"if we take the coefficients of a system of equations as vectors, then the vectors are linearly independent if the system has one solution, and linearly dependent if the system has either zero or infinite solutions"
    • geometric interpretation of dot product
      • %%projection of one vector onto the other times the magnitude of the vector %%
      • magnitude of projection of a vector onto another vector times the magnitude of the other vector
        • \(|A||B| \cos \theta\)
    • def vector space
      • set V with addition and scalar multiplication such that there is
        • additive identity
        • additive inverse (no multiplicative inverse!)
        • commutativity
        • assosiativty
        • distibutive property
    • elementary matrix
      • identity matrix with one row operation applied

1.2 Content and knowledge review

1.2.1 Definitions!

  • Vector space
  • Subspace
  • Sums
  • Direct sums
  • linear independence / dependence
  • groups
  • fields
  • spans
  • basis
  • dimension
  • linear combination
  • commutativity
  • associativity
  • distributivity
  • elementary matrices
  • nonsingular matrices